Metabotropic glutamate receptor modulation of excitotoxicity in the neostriatum: role of calcium channels.

نویسندگان

  • C S Colwell
  • M S Levine
چکیده

We have previously shown that metabotropic glutamate receptor (mGluR) activation can attenuate N-methyl-d-aspartate (NMDA)-induced excitotoxic injury in the neostriatum both in vivo and in vitro. Our earlier studies made use of the non-subtype selective mGluR agonist 1-amino-cyclopentane-1,3-dicarboxylic acid (tACPD). In the present study, we extended these observations by identifying the subtype of mGluR involved. Using selective mGluR agonists, we provide evidence that the Group II mGluRs are responsible for inhibition of NMDA excitotoxicity in the neostriatum. In addition, we provide evidence that the inhibitory effects of tACPD on excitotoxicity are dependent upon calcium influx as they are blocked by a low calcium solution as well as the broad-spectrum calcium channel blocker cadmium. The tACPD-induced attenuation was also blocked by omega-conotoxin GVIA suggesting participation of N-type calcium channels. Whole cell voltage clamp recordings were made to directly determine the effects of mGluRs on voltage-gated calcium channels in neostriatal neurons. As predicted, both tACPD and the Group II agonist 3C4HPG inhibited calcium currents in neostriatal neurons. Again this effect was blocked by omega-conotoxin GVIA. Overall the results suggest that mGluR regulation of voltage-gated calcium channels can limit NMDA toxicity in the neostriatum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabotropic glutamate receptors and their ligands applications in neurological and psychiatric disorders

Metabotropic glutamate receptors (mGluRs) consist of a large family of G-protein coupled receptors that are critical for regulating normal neuronal function in the central nervous system. The wide distribution and diverse physiological roles of various mGluR subtypes make them highly attractive targets for the treatment of a number of neurological and psychiatric disorders. The discovery of ...

متن کامل

Ionotropic Glutamate Receptors and their Role in Neurological Diseases

Glutamate is extensively and relatively uniformly distributed in the central nervous system (CNS) and its effects mediated by two distinct groups of receptors including Ionotropic and metabotropic glutamate receptors. Concentration of glutamate in the nervous system is much higher than in other tissues. Glutamate receptors play an important role in synaptic transmission, neural plasticity and n...

متن کامل

P6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation

Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...

متن کامل

The Role of Canonical Transient Receptor Potential Channels in Seizure and Excitotoxicity

Canonical transient receptor potential (TRPC) channels are a family of polymodal cation channels with some degree of Ca2+ permeability. Although initially thought to be channels mediating store-operated Ca2+ influx, TRPC channels can be activated by stimulation of Gq-coupled G-protein coupled receptors, or by an increase in intracellular free Ca2+ concentration. Thus, activation of TRPC channel...

متن کامل

Activation of NOX2 by the stimulation of ionotropic and metabotropic glutamate receptors contributes to glutamate neurotoxicity in vivo through the production of reactive oxygen species and calpain activation.

Prolonged activation of glutamate receptors leads to excitotoxicity. Several processes such as reactive oxygen species (ROS) production and activation of the calcium-dependent protease, calpain, contribute to glutamate-induced damage. It has been suggested that the ROS-producing enzyme, NADPH oxidase (NOX), plays a role in excitotoxicity. Studies have reported NOX activation after NMDA receptor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research

دوره 833 2  شماره 

صفحات  -

تاریخ انتشار 1999